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Abstract
The structure and stability of four Bravais phases of Fe under pressure are determined by a
procedure which first looks for minima of the internal energy E at constant volume V and then
tests the states at the minima for stability (or instability) by showing that the Gibbs free energy
G at constant pressure p is a minimum (or not a minimum) with respect to all possible strains.
The phases considered here are either body-centered tetragonal (bct), which includes
body-centered cubic (bcc) and face-centered cubic (fcc), or rhombohedral (rh). The results
include showing that bcc Fe becomes unstable at 1500 kbar, that fcc Fe is stable at p = 0, that a
phase transition from bcc to fcc is thermodynamically favored at 290 kbar, that a bct phase at
c/a = 0.89 is unstable up to 2700 kbar and that a rh phase with angle α = 60.5◦ is stable at
p = 0 with E slightly higher than that for fcc Fe.

1. Introduction

First-principles theory can now find metastable phases of
elements with good accuracy. The number of such phases, i.e.,
of periodic atomic bonding arrangements with local stability,
grows substantially under stress. A finite fraction of them can
be specified by limiting attention to Bravais phases, i.e., one-
atom per unit cell of a crystal, at pressures under a specified
maximum value of hydrostatic pressure for a rigid lattice. In
this work a systematic procedure for finding metastable phases
is illustrated for four Bravais structures of Fe which possibly
could be extended to all the Bravais structures.

The first part of the procedure finds equilibrium states of
a given Bravais structure from calculating the internal energy
E at constant volume V ; the second part uses the Gibbs free
energy G around the equilibrium states to check if they are
stable at constant pressure by showing G is a minimum for all
small strains.

Some results disagree with other recent first-principles
calculations, e.g., we verify the instability pressure for bcc Fe
to be 1500 kbar as found in our 2002 papers [1, 2], which
differs from the instability pressure given in several recent
papers [3–7]. We note that in some cases the difference appears
to be due to neglect of a ‘pressure correction’, which we derive
here more simply than the classical abstract derivations in the
literature [8].

We show that fcc FM Fe at zero pressure is stable, which
disagrees with several other calculations [9–11], and we show

why we differ. We show that the bct phase found in our
previous paper [2] is unstable at all pressures up to 2700 kbar.
It is still an equilibrium state, i.e., contains no internal stresses
other than an internal pressure matched by an equal applied
pressure. However the phase does not pass the absolute
stability test, i.e., that no small strain exists that decreases G.

We find an unexpected stable rhombohedral (rh) phase at
zero pressure (and above) with E close to but greater than that
of fcc FM Fe, which would complicate the structure of Fe films
on various substrates.

Section 2 contains the thermodynamic theory and strain
expansions.

Section 3 describes procedures and results.
Section 4 discusses the need to use both E and G to

find stable phases, notes when a pressure correction to elastic
constants is needed, and comments on the instability pressure
of bcc FM Fe.

2. Thermodynamic theory and strain expansions

Our procedure for finding stable atomic bonding arrangements
under pressure uses three basic theoretical tools.

(1) The capability of first-principles band structure
programs to calculate the total energy E of an arbitrary
periodic structure with relative accuracy ∼=10−6 Ryd, (2) the
thermodynamic theorem that relates E to equilibrium states,
(3) the thermodynamic theorem that relates the Gibbs free
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energy G to the stability of an equilibrium state at constant
pressure.

The E theorem states that in the equilibrium state of a
system constrained to constant volume, E is a minimum with
respect to all strains satisfying the constraint [12]. However the
equilibrium state is not necessarily stable, i.e., under certain
strains that do not satisfy the constraint the strains generate
stresses that increase the strain. To establish stability under
pressure the G theorem is needed.

The G theorem states that in a system held at constant
applied pressure p, the Gibbs free energy G ≡ E + pV (for
the rigid lattice) is a minimum with respect to all strains [12].
Hence a state found as a minimum of E at some volume can be
tested for stability by checking whether G is a minimum too at
the pressure corresponding to the volume of the phase.

For finding and characterizing the phases of a two-
parameter structure like bct (structural parameters a and c)
it is convenient to look for minima of E at constant V as a
function of one parameter, e.g., c/a; at each c/a no further
minimization is needed since V and c/a fix the structure.
Then p is found from the equilibrium E (of the minimum
corresponding to a particular phase) at several adjacent V
values and G calculated at that minimum is tested to see if G is
also a minimum. The test involves the elastic constants, as will
be shown later. If the structure has more than two parameters,
the E values found at the minima of E as one parameter varies
will have to be minimized with respect to additional parameters
while continuing to constrain the volume. A quantitative
description of the procedure for finding stable phases in bct,
and later in rh structure, using E and G follows.

An arbitrary homogeneous deformation of the crystal
around equilibrium can be specified by the six components
of Eulerian strain εi , i = 1–6, with rigid rotation removed
(the εi are symmetrized displacement gradients [13]), since E
and V are assumed independent of rotations. Then for small
deformations and the corresponding small εi the change in G
from the equilibrium value G0 can be expanded in powers of
the εi (up to second order) in the form,

δG

V0
≡ G − G0

V0
= 1

2

6∑

i, j=1

ci jεiε j . (1)

Since G is a minimum at equilibrium, the expansion (1)
has no linear terms and must start with second-order terms
εiε j . The coefficients of the second-order terms ci j can be
evaluated by calculating G and δG for various values of the
εi .

The ci j will in general be functions of p and non-linear
behavior of ci j(p) can occur. Usually the ci j will increase
with increasing p as compressed material becomes denser
and harder. However in the case of bcc FM Fe, increase in
p weakens the ferromagnetic binding energy (by the Pauli
principle that discourages two electrons with the same spin
from coming close to each other) and the elastic shear constant
C ′ ≡ (c11 − c12)/2 decreases and goes to zero at a pressure
ps. The general indication of instability of an equilibrium state
at some p is failure of the quadratic form in the εi in (1) to
be positive definite for that equilibrium structure. Then the

quadratic form is negative for some set of εi at p, hence the
crystal is unstable at that p. The occurrence of instability
can be indicated by the vanishing of certain elastic constants
at p = ps, or, more generally, by a negative value of an
eigenvalue of the 6×6 ci j matrix. Thus the values of the ci j(p)

determine the stability at p. The ci j(p) are in fact the elastic
constants (also called elastic stiffness coefficients) and enter
the stress–strain relations for a crystal at p and the equation of
motion of disturbances of equilibrium in the crystal at p; these
properties of the ci j are shown by Barron and Klein [8].

We relate (1) to the work of Barron and Klein by
rearranging (1) as an equation for δE , the change in E for a
homogeneous deformation εi , i = 1–6 at constant p,
δE

V0
≡ E − E0

V0
= δG

V0
− p

δV

V0

= − p

V0

6∑

i=1

(
∂V

∂εi

)

0

εi

+ 1

2

6∑

i, j=1

(
ci j − p

V0

(
∂2V

∂εi∂ε j

)

0

)
εiε j . (2)

In (2) δV has been expanded in a power series in strains εi

around equilibrium to second order.
The strain derivatives of V can be evaluated by expressing

V as the determinant of the matrix of orthogonal components
of the strained lattice vectors of the unit cell. The matrix of
strained orthogonal components is given by the product of the
strain matrix plus the identity matrix acting on the matrix of the
equilibrium lattice vectors, as shown in (3) (to second order)

V ({εi}) =
∣∣∣∣∣∣

1 + ε1
ε6
2

ε5
2

ε6
2 1 + ε2

ε4
2

ε5
2

ε4
2 1 + ε3

∣∣∣∣∣∣

∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣

= [1 + ε1 + ε2 + ε3 + ε1ε2 + ε2ε3 + ε3ε1

− 1
4 (ε2

4 + ε2
5 + ε2

6)]V0, (3)

where {εi} means the six εi , the ai , bi and ci are the
unstrained orthogonal components of the lattice vectors which
define the unit cell and the matrix product gives the strained
components [13]. Differentiation of the polynomial in the εi

shows that the only non-zero first and second strain derivatives
are

∂V

∂εi
= V0, i = 1, 2, 3;

∂2V

∂ε2
i

= − V0

2
, i = 4, 5, 6;

∂2V

∂εi∂ε j
= V0, i, j = 1, 2, 3; i �= j.

(4)

Putting (4) into (2) gives for the expansion of δE around
equilibrium, where coefficients c̄i j are defined,

δE

V0
= −p(ε1 + ε2 + ε3) + 1

2

6∑

i, j=1

c̄i jεiε j ,

c̄ii ≡ cii i = 1, 2, 3,

c̄ii ≡ cii + p/2 i = 4, 5, 6,

c̄i j ≡ ci j − p i, j = 1, 2, 3, i �= j.

(5)
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The relations in (3)–(5) hold for arbitrary symmetry.
For cubic symmetry (5) gives

c11 = c̄11

c12 = c̄12 + p

c44 = c̄44 − p/2

C ′ ≡ (c11 − c12)/2 = (c̄11 − c̄12)/2 − p/2 ≡ C̄ ′ − p/2.

(6)

Note from (5) that E does not have a minimum at
equilibrium for all strain tensors, but only for tensors which
make ε1 + ε2 + ε3 = 0, hence keep V constant to first order
and make the linear terms in the εi vanish. However G does
have a minimum at stable equilibrium for a given p for all
variations of the εi . A particular variation used in [1, 2] is along
the epitaxial Bain path (EBP), which is defined and discussed
in [14].

The elastic constant C ′ of a phase can be evaluated directly
from minima of the function E(c/a) at constant V from the
curvature of E(c/a) at the minimum [15]. From (5) by
changing variables from ε1 = ε2 = δa/a, ε3 = δc/c to
δ(c/a) and δV where V = ca2/2, the quadratic term in δE for
[δ(c/a)]2 gives (at the minimum corresponding to a particular
cubic phase)

1

V0

(
∂2 E

∂ (c/a)2

)

V

= 4

3
C̄ ′ = 4

3
C ′ + 2

3
p. (7)

The coefficient C̄ ′ of the quadratic term [δ(c/a)]2 in
δE requires the pressure correction −p/2 to give C ′, which
vanishes when bcc Fe becomes unstable. Note that the
vanishing of the curvature of E(c/a) does not occur at the
instability pressure, but at a different pressure.

The formula corresponding to (7) for the more general
case of a bct structure is

1

V0

(
∂2 E

∂(c/a)2

)

V

= 2

9(c/a)2
[c̄11 + c̄12 − 4c̄13 + 2c̄33], (8)

which reduces to (7) for bcc symmetry where c̄13 = c̄12, c̄33 =
c̄11, c/a = 1.

3. Procedures and results

3.1. Calculation on bct structures

The total-energy calculations for each periodic structure
were made with the well-tested WIEN2k band structure
program [16] with the Perdew–Burke–Ernzerhof generalized-
gradient-approximation. The computation parameters in all
cases were: plane wave cutoff RMT Kmax = 7, RMT = 1.5 au,
Gmax = 14, mixer = 0.05 and 1000 k-points in the irreducible
Brillouin zone, convergence criterion on the energies 1 ×
10−3 mRyd (10−6 Ryd). All calculations were spin polarized.
All the four phases have pressure-dependent finite moments.

In the first stage (of three stages) a comprehensive set of
functions E(c/a) at V = Vi , i = 1–36 were calculated which
cover a range of pressure from 0 to 2800 kbar. A selected set of
E(c/a) curves is shown in figure 1 to illustrate the presence of
up to three minima corresponding to bct, bcc and fcc phases.

Figure 1. Total internal energy as a function of c/a (called EV (c/a)
curves) of FM Fe at selected volumes; E0 is the total energy of fcc Fe
at V = 48 au3/atom. For clarity the EV (c/a) curves at volumes
from 50 to 76 au3 are shifted toward E0 by 36.20, 89.90, 120.0,
158.5, 175.2, 186.9, 194.7, 201.9 mRyd/atom respectively. The
vertical dashed lines indicate the bct, bcc and fcc phases at
c/a = 0.89, 1.00 and 1.414 respectively. The solid lines interpolate
between the calculated points.

Each of the minima corresponds to an equilibrium state of a
phase at volume Vi , since E has been minimized at that Vi with
respect to all structural parameters satisfying the constraints
Vi(a, c) constant—in the bct case only c/a since c/a and V
fix the structure. However the existence of a minimum does
not mean stability. In fact in figure 1 there is a gap between the
Vi at which the curvature of E(c/a) vanishes and the smaller
Vi (and higher pressure) at which each phase stabilizes, as will
be illustrated later. In the gap all minima are equilibrium states
that are unstable.

In the second stage the separate minima, which determine
the structure (c/a)

ph
m and energy Eph

m (V ) of the separate phases,
are used to find the equation of state (EOS) of each phase from

pph(V ) = −dEph
m (V )/dV , (9)

where ph = bct, bcc, fcc with different (c/a)m values. Figure 2
plots the separate EOS.

The pph(V ) then determine the Gibbs free energies at each
minimum from

Gph(p) = Em(V ph(p)) + pV ph(p). (10)

Differences of Gph(p) from the bcc phase are plotted in
figure 3 to find the thermodynamic transition pressure from
bcc → fcc at 290 kbar.

Finally the stability of each of the equilibrium states is
determined by a calculation of the eigenvalues of the 6 ×
6 ci j , i, j = 1–6 matrix. A minimum path (MNP) program
which converges on minima of G, finds the ci j from trial sets
of strains in (1) and calculates the eigenvalues [17]. A negative
eigenvalue means the expansion in (1) is not positive definite

3
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Figure 2. p(V ) curves for bcc phase (filled circles), bct phase (open
squares) and fcc phase (open circles) of FM Fe. The crossing of the
p(V ) curve and the dashed line ( p = 0) gives the equilibrium
volume: V fcc

0 = 72.8 au3/atom, V bcc
0 = 77.3 au3/atom. For

comparison selected p(V ) data of bcc Fe (open triangles) and of fcc
Fe (filled triangles) (deduced from figure 2 of [6]) are plotted.

Figure 3. Free energy difference curve G fcc(p) − Gbcc(p) of FM Fe
indicating the phase transition from bcc to fcc phase at 290 kbar. The
solid line interpolates between the calculated points.

and indicates instability. In this way the X’s used in figure 4 for
instability were found including the instability of the bct phase
at c/a = 0.89 found in [2], where the bct phase was incorrectly
called stable above 1825 kbar.

The curvatures at the minima of E(c/a) at V give values
of the elastic constant C ′ = (c11 − c12)/2 for the cubic phases
from (7). In figure 5 C ′(p) obtained from (7) is compared to
C ′(p) obtained from second derivatives of G(p). Both show
instability around 1500 kbar, and an anomaly in C ′(p) below
500 kbar. The instability pressure 1500 kbar found here in two
different calculations is substantially lower than some values
found in recent first-principles calculations [3–5], generally
due to neglect of the pressure correction. Table 1 lists various
published values of the instability pressure.

3.2. The ground state of γ -Fe at zero pressure

We refer to fcc Fe and phases near fcc structure as phases
of γ -Fe. An important result of this detailed study of the

Figure 4. c/a versus pressure for bct, bcc and fcc phases of FM Fe.
The meanings of the symbols are: filled circle—Bravais ground state,
open circle— Bravais stable state, cross—unstable state. The phase
transition from bcc to fcc at 290 kbar is indicated by an arrow.

Figure 5. Shear elastic constants C ′ and C̄ ′ of bcc FM Fe as
functions of pressure. The data of C ′ are calculated in two ways: the
filled circles are obtained from C ′ = (c11 − c12)/2 (equation (6))
where c11 and c12 are obtained from second derivatives of G(p); the
open circles are obtained from C ′ = C̄ ′ − p/2, where the data of C̄ ′
are calculated from the curvature of the E(c/a) curves using (7).
Both filled and open circles show that C ′ vanishes at the instability
pressure of bcc Fe ps ≈ 1500 kbar. In contrast, C̄ ′, or the curvature
at minima of E(c/a) curves at constant V , does not vanish at ps but
at a higher pressure around 2000 kbar.

phases of Fe and their pressure dependences is the conclusion
that the fcc magnetic phase of Fe under ambient conditions is
stable. This conclusion disagrees with previous first-principles
studies of Fe [9–11]. From the EOS of fcc Fe in figure 2 at
pfcc = 0, V fcc

0 = 72.8 au3/atom. A stability test with the MNP
program [17] shows that the fcc phase is stable. Note that if
we had wrongly used the bcc EOS which shows at pbcc = 0 a
value of 77.3 au3/atom, then figure 1 would show a maximum
at c/a = 1.414 and the fcc phase would be called unstable.

In [9] Peng and Jansen calculate E(c/a) at V =
79 au3/atom and find a maximum for fcc structure, hence
conclude fcc Fe is unstable. But figure 2 shows that at V =
79 au3/atom fcc is under negative pressure and the condition
of instability found in [9] does not apply at p = 0.

4
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Table 1. Instability pressure ps of bcc FM Fe calculated from first
principles in recent papers.

References

Instability
pressure ps

(kbar) of bcc
FM Fe

This work and [2] 1500
[3] 3200
[4] 2000
[5]a 1800
[6] 1000
[7] 1600

a From a gap in the phonon dispersion
curves of bcc Fe.

In [10] Spišák and Hafner state that fcc Fe is unstable in
agreement with [9], but give no details. In [11] they look for a
stable monoclinic phase of Fe by minimizing E with respect
to two structural parameters c/a and δ (which determines
angle γ ) and find a minimum at V = 78 au3/atom. The
state they find is unlikely to be an equilibrium state because a
monoclinic crystal has four structural parameters (a, b, c, γ ),
hence one more minimization of E is needed. Even if the state
is close to equilibrium, the pressure is unlikely to be zero, since
the pressure has not been controlled, the value of V is large
compared to fcc Fe at pfcc = 0 and is in the range of instability
for fcc Fe. To find a monoclinic stable phase at p = 0 the
minimization of E at constant V must be made with respect to
three structural parameters and must be repeated over a range
of V to obtain pressures from (9) to be searched for a zero
value of p. In a calculation with the MNP program starting
from the state in [11] and assuming p = 0 the result indicates
that the state found in [11] is not a phase at p = 0, i.e., is not
a minimum of the Gibbs free energy G. The MNP program
is able to find a monoclinic equilibrium state near the state
in [11] if the state in [11] approximates a phase, since the MNP
program homes in on minima of G; however the MNP program
starting from the monoclinic phase of [11] converges to the fcc
phase at V = 72.8 au3/atom.

Our procedures are able to find phases of two-parameter
structures like the bct calculations in section 3.1 and also for
rh structures, parameters a and α. Figure 6(a), like figure 1,
shows equilibrium states by the presence of minima of E(α)

at constant V which includes the fcc structure. Several rh
minima appear, and we focus on the one at α ∼= 60.5◦. A
plot of E rh60.5◦

m (V ) values in figure 6(b) shows the minimum
and the equilibrium volume at prh = 0 to be 72.45 au3/atom.
The E value of rh FM Fe at the lowest data point (V =
72.5 au3/atom) in figure 6(b) is −2545.539 266 Ryd/atom
which is slightly higher than −2545.539 362 Ryd/atom of fcc
FM Fe at pfcc = 0. A stability check with the MNP program
shows the rh phase to be stable.

4. Discussion

The procedure used here to find and describe phases of Fe
requires evaluation of both the internal energy E and the Gibbs
free energy G. Equilibrium states at constant volume, which

Figure 6. (a) Total internal energy as a function of angle α (called
E(α) curves) of the 1-atom rh unit cell of FM Fe at selected volumes
near pfcc = 0; E0 is the total energy of fcc FM Fe at
V = 72.8 au3/atom. For clarity the E(α) curves at volumes from
72.5 to 71.0 au3/atom are shifted away from E0 by 0.75, 1.25, 2.04,
2.55 and 3.15 mRyd/atom respectively. The solid lines interpolate
between the calculated points. The vertical dashed line at α = 60◦
denotes the fcc phase, while the vertical dashed line at α = 60.5◦
denotes the rh phase. (b) Total internal energy at α = 60.5◦ on the
E(α) curve as a function of volume; E ′

0 is the total energy of rh FM
Fe at V = 72.5 au3/atom. The solid curve is the result of fitting the
data points with a third-order polynomial, which shows that the
equilibrium state of the rh phase of FM Fe is at V = 72.45 au3/atom.

are possible phases, are located by searching for minima of E
in a given structure as a function of one structure parameter at
constant V . Advantages of this search are that the number of
variables by which E needs to be minimized is reduced by one
by the constraint to constant volume, and also that all phases
with the given structure are treated together in the same way,
which improves the accuracy of differences between phases. In
the case of two-parameter systems like bct and rh, the value of
a single parameter and the volume fix both the structure and E
and no further minimization is required.

The equilibrium states found from E are not necessarily
stable; establishing stability of a state under pressure requires
evaluation of G and proving that G is a minimum with respect
to all possible small deformations around the equilibrium
state. Proving a minimum of G is equivalent to showing the
positive definiteness of the quadratic form in the strains in

5



J. Phys.: Condens. Matter 20 (2008) 345233 S L Qiu et al

the expression of δG in (1), whose coefficients are the elastic
constants ci j , i, j = 1–6. All the ci j are evaluated using the δG
produced by different strains—in the general case 21 strains are
needed. Positive values of all six eigenvalues of the 6 × 6 ci j

matrix then prove stability.
If the coefficients of the second-order strain terms in the

expansion of δE in (2) are evaluated, the c̄i j are obtained and
must be modified by the pressure corrections (5) to obtain the
ci j . Equations (7) and (8) show directly that second derivatives
of E give c̄i j , and figure 5 shows the important effect of the
pressure correction in determining the instability pressure of
bcc Fe.

The fact that some equilibrium states corresponding to
minima of E at constant V are not stable gives meaning to the
theoretical description of some states as ‘unstable phases’. A
critical pressure can be evaluated at which a minimum appears
in E(c/a) at constant V , which only becomes stable at a larger
pressure. Each phase can be characterized by the pressures
of appearance and disappearance, by the pressures of the
onset of stability and instability and by the pressures at which
transitions to and from other phases are thermodynamically
permitted.

The geophysically interesting pressure at which bcc Fe
becomes unstable has been found to be 1500 kbar in three
separate calculations: (1) in our 2002 papers [1, 2] using the
WIEN97 band structure program and evaluation of second
strain derivatives of G, (2) by the WIEN2k program and
evaluation of δG using various strains; the data are shown
in figure 5 with filled circles, (3) by the evaluation of the
second derivatives of E(c/a) at constant V from the curvatures
at minima of E , from which the shear elastic constant C ′ is
calculated using (7) and plotted in figure 5 with open circles.
A number of first-principles papers have found different values
of the instability pressure, in some cases due to neglect of the
pressure correction. The proposed values for the instability
pressure of bcc ferromagnetic (FM) Fe are tabulated in table 1.

In summary in this paper the effectiveness of procedures
for finding stable phases based on calculating E at constant
V and δG at constant p is shown, e.g., the proof that bcc Fe is
unstable at 1500 kbar, the proof that fcc Fe is stable at pfcc = 0,
the proof that bct Fe at c/a = 0.89 is unstable at all pressures
up to 2700 kbar, the observation of a stable rh phase at prh = 0.

Essential elements of the procedure are the use of separate EOS
for different phases, and the capability of testing an equilibrium
state for stability.
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